189 research outputs found

    Galilean symmetry in the effective theory of inflation: new shapes of non-Gaussianity

    Full text link
    We study the consequences of imposing an approximate Galilean symmetry on the Effective Theory of Inflation, the theory of small perturbations around the inflationary background. This approach allows us to study the effect of operators with two derivatives on each field, which can be the leading interactions due to non-renormalization properties of the Galilean Lagrangian. In this case cubic non-Gaussianities are given by three independent operators, containing up to six derivatives, two with a shape close to equilateral and one peaking on flattened isosceles triangles. The four-point function is larger than in models with small speed of sound and potentially observable with the Planck satellite.Comment: 23 pages, 6 figures. v2: minor changes to match JCAP published versio

    The consistency condition for the three-point function in dissipative single-clock inflation

    Full text link
    We generalize the consistency condition for the three-point function in single field inflation to the case of dissipative, multi-field, single-clock models. We use the recently introduced extension of the effective field theory of inflation that accounts for dissipative effects, to provide an explicit proof to leading (non-trivial) order in the generalized slow roll parameters and mixing with gravity scales. Our results illustrate the conditions necessary for the validity of the consistency relation in situations with many degrees of freedom relevant during inflation, namely that there is a preferred clock. Departures from this condition in forthcoming experiments would rule out not only single field but also a large class of multi-field models.Comment: 26+11 page

    A Naturally Large Four-Point Function in Single Field Inflation

    Full text link
    Non-Gaussianities of the primordial density perturbations have emerged as a very powerful possible signal to test the dynamics that drove the period of inflation. While in general the most sensitive observable is the three-point function in this paper we show that there are technically natural inflationary models where the leading source of non-Gaussianity is the four-point function. Using the recently developed Effective Field Theory of Inflation, we are able to show that it is possible to impose an approximate parity symmetry and an approximate continuos shift symmetry on the inflaton fluctuations that allow, when the dispersion relation is of the form ωcsk\omega\sim c_s k, for a unique quartic operator, while approximately forbidding all the cubic ones. The resulting shape for the four-point function is unique. In the models where the dispersion relation is of the form ωk2/M\omega\sim k^2/M a similar construction can be carried out and additional shapes are possible.Comment: 13 pages, 1 figure. v2: extended discussion on near-de-Sitter model

    On Loops in Inflation III: Time Independence of zeta in Single Clock Inflation

    Get PDF
    Studying loop corrections to inflationary perturbations, with particular emphasis on infrared factors, is important to understand the consistency of the inflationary theory, its predictivity and to establish the existence of the slow-roll eternal inflation phenomena and its recently found volume bound. In this paper we prove that the zeta correlation function is time-independent at one-loop level in single clock inflation. While many of the one-loop diagrams lead to a time-dependence when considered individually, the time-dependence beautifully cancels out in the overall sum. We identify two subsets of diagrams that cancel separately due to different physical reasons. The first cancellation is related to the change of the background cosmology due to the renormalization of the stress tensor. It results in a cancellation between the non-1PI diagrams and some of the diagrams made with quartic vertices. The second subset of diagrams that cancel is made up of cubic operators, plus the remaining quartic ones. We are able to write the sum of these diagrams as the integral over a specific three-point function between two very short wavelengths and one very long one. We then apply the consistency condition for this three-point function in the squeezed limit to show that the sum of these diagrams cannot give rise to a time dependence. This second cancellation is thus a consequence of the fact that in single clock inflation the attractor nature of the solution implies that a long wavelength zeta perturbation is indistinguishable from a trivial rescaling of the background, and so results in no physical effect on short wavelength modes.Comment: 47 pages, 7 figures; v2: JHEP published version, typos and minor correction

    Optimal limits on f_{NL}^{local} from WMAP 5-year data

    Full text link
    We have applied the optimal estimator for f_{NL}^{local} to the 5 year WMAP data. Marginalizing over the amplitude of foreground templates we get -4 < f_{NL}^{local} < 80 at 95% CL. Error bars of previous (sub-optimal) analyses are roughly 40% larger than these. The probability that a Gaussian simulation, analyzed using our estimator, gives a result larger in magnitude than the one we find is 7%. Our pipeline gives consistent results when applied to the three and five year WMAP data releases and agrees well with the results from our own sub-optimal pipeline. We find no evidence of any residual foreground contamination.Comment: [v1] 21 pages, 7 figures. [v2] minor changes matching published versio

    Scale-Invariance and the Strong Coupling Problem

    Full text link
    The effective theory of adiabatic fluctuations around arbitrary Friedmann-Robertson-Walker backgrounds - both expanding and contracting - allows for more than one way to obtain scale-invariant two-point correlations. However, as we show in this paper, it is challenging to produce scale-invariant fluctuations that are weakly coupled over the range of wavelengths accessible to cosmological observations. In particular, requiring the background to be a dynamical attractor, the curvature fluctuations are scale-invariant and weakly coupled for at least 10 e-folds only if the background is close to de Sitter space. In this case, the time-translation invariance of the background guarantees time-independent n-point functions. For non-attractor solutions, any predictions depend on assumptions about the evolution of the background even when the perturbations are outside of the horizon. For the simplest such scenario we identify the regions of the parameter space that avoid both classical and quantum mechanical strong coupling problems. Finally, we present extensions of our results to backgrounds in which higher-derivative terms play a significant role.Comment: 17 pages + appendices, 3 figures; v2: typos fixe

    Conformal consistency relations for single-field inflation

    Full text link
    We generalize the single-field consistency relations to capture not only the leading term in the squeezed limit---going as 1/q^3, where q is the small wavevector---but also the subleading one, going as 1/q^2. This term, for an (n+1)-point function, is fixed in terms of the variation of the n-point function under a special conformal transformation; this parallels the fact that the 1/q^3 term is related with the scale dependence of the n-point function. For the squeezed limit of the 3-point function, this conformal consistency relation implies that there are no terms going as 1/q^2. We verify that the squeezed limit of the 4-point function is related to the conformal variation of the 3-point function both in the case of canonical slow-roll inflation and in models with reduced speed of sound. In the second case the conformal consistency conditions capture, at the level of observables, the relation among operators induced by the non-linear realization of Lorentz invariance in the Lagrangian. These results mean that, in any single-field model, primordial correlation functions of \zeta are endowed with an SO(4,1) symmetry, with dilations and special conformal transformations non-linearly realized by \zeta. We also verify the conformal consistency relations for any n-point function in models with a modulation of the inflaton potential, where the scale dependence is not negligible. Finally, we generalize (some of) the consistency relations involving tensors and soft internal momenta.Comment: 26 pages, 1 figure. v2. Corrected typos, notably a sign error in eq. (54). Matches JCAP published versio
    corecore